Canopy textural properties from metric resolution imagery: Validation, sensitivity and perspectives within REDD.

Programme Pilote de recherches: Biodiversité, Changements globaux et Santé dans les forêts tropicales humides

- Part of a broader effort from IRD in central Africa:
 - Tropical forest as a focal object for interdisciplinary research ;
 - Consequences of global change on biodiversity, resources and health;
 - Possibly set up permanent research platforms.
- Yaoundé workshop 10/2009

➤Call for partnerships...

Need to quantify canopy structure

Valuable for :

- Carbon dynamics and forest degradation assessment;
- Forest ecology (allometry rules, gap dynamics, etc.);
- Forest-climate interaction (gaz and vapor exchange);
- Forest types, etc.
- Difficult to measure in the field,
 - Approached via indirect estimates (DBH);
 - Limited representativity.

Remote sensing methods

• Limitation of pixelwise optical and radar :

- Saturation for high biomass levels (>250 t/ha);
- Unable to detect degradation.

• High cost of airborne sensors (e.g. LiDAR).

 Potential of VHR imagery (Quickbird, Ikonos, etc.) but operational methodologies to be developed.

Fourier periodograms: quantification of image texture

2D Fourier transform textural ordination (FOTO)

- 2D Fourier transform
- Radial power spectrum (r-spectrum)
- Proportions of the image variance accounted for by successive frequency bins, across azimuthal orientations.
- Principal components of image rspectra dataset
- = Identification of main axes of textural variation in the image dataset.

Textural ordination: principal axes of variation

Relationships with forest parameters

Relationships with forest parameters

Proisy et al. RSE (2007)

Extreme configurations: typical examples

Hillshade effects on LiDAR surface models

fnrs Inra

Barbier et al. RSE (2010)

Validation: the Canopy project

- Texture analysis: The FOTO method (IRD).
- Field validation: Large forest inventory database across Central Africa (FRM).
- Software development: Convivial interface in ArcGis (Nev@ntropic).

Large scale validation: test sites

Imagery

- Planet Action: Spot 5, Formosat, Kompsat
- <u>Others:</u> Quickbird, Ikonos, GeoEye, Orbview

Field Data

Geolocalized plots of 0.5 ha

FOTO

analysis

fnlc

- Forest concessions above 50,000 ha
- Inventoried surface areas around 1%
- All trees above 10-20 cm diameter
- Destructive biomass sampling (upcoming)

Perspectives

- Quantification of forest canopy structure.
- Valuable insights into :
 - Degradation level ;
 - Biomass and carbon, with no saturation ;
 - Other forest structural attributes.
- Large scale application and repeatable.
- Effect of acquisition conditions mitigated.
- Relative low cost.